function d = cssim4(reference, distorted) % calculation of CSSIM4 metric % % M. Ponomarenko, K. Egiazarian, V. Lukin, V. Abramova, "Structural Similarity Index with Predictability % of Image Blocks", in Proceedings of International Conference MMET 2018, July 2-5, 2018, 4p. [y,x,z]=size(reference); if z>1 % color images reference = double(rgb2ycbcr(uint8(reference))); distorted = double(rgb2ycbcr(uint8(distorted))); r1 = imresize(squeeze(reference(:,:,1)),0.5,'bilinear'); d1 = imresize(squeeze(distorted(:,:,1)),0.5,'bilinear'); r2 = imresize(squeeze(reference(:,:,1)),0.25,'bilinear'); d2 = imresize(squeeze(distorted(:,:,1)),0.25,'bilinear'); r3 = imresize(squeeze(reference(:,:,2)),0.125,'bilinear'); d3 = imresize(squeeze(distorted(:,:,2)),0.125,'bilinear'); r4 = imresize(squeeze(reference(:,:,3)),0.125,'bilinear'); d4 = imresize(squeeze(distorted(:,:,3)),0.125,'bilinear'); d = (ssim4(r1,d1) + ssim4(r2,d2)*0.5 + ssim4(r3,d3)*0.5 + ssim4(r4,d4)*0.5)/2.5; else % grayscale images reference = double(reference); distorted = double(distorted); r1 = imresize(reference,0.5,'bilinear'); d1 = imresize(distorted,0.5,'bilinear'); r2 = imresize(reference,0.25,'bilinear'); d2 = imresize(distorted,0.25,'bilinear'); d = (ssim4(r1,d1) + ssim4(r2,d2)*0.5)/1.5; end end function d = ssim4(reference, distorted) % calculation of SSIM4 metric % reference and distorted must be grayscale images [y,x,z]=size(reference); if z>1 reference = rgb2ycbcr(uint8(reference)); reference = double(squeeze(reference(:,:,2))); distorted = rgb2ycbcr(uint8(distorted)); distorted = double(squeeze(distorted(:,:,2))); else reference = double(reference); distorted = double(distorted); end reference = imresize(reference,0.5,'bilinear'); distorted = imresize(distorted,0.5,'bilinear'); bs = 9; hsz = 9; zp = 2; % default values d1 = mapdissim(reference,bs,hsz,zp); d2 = mapdissim(distorted,bs,hsz,zp); [loy lox] = size(d1); loy=loy-11;lox=lox-11; d1 = d1(6:6+loy,6:6+lox); d2 = d2(6:6+loy,6:6+lox); d1s=d1.^0.5; d2s=d2.^0.5; K4 = 0.03; L = 255; C4 = (K4*L)^2; dd = (2*d1s.*d2s+C4)./(d1+d2+C4); %dd =ones(loy+1, lox+1); d = ssimm(reference, distorted, [0.01, 0.03], fspecial('gaussian', 11, 1.5), 255, dd); end function [mssim, ssim_map] = ssimm(img1, img2, K, window, L, dsi) % Modification with 4-th factor - self-similarity measure % dsi - similarity of dissimilarity maps %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error visibility to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612, %Apr. 2004. % %Kindly report any suggestions or corrections to zhouwang@ieee.org % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 | nargin > 6) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) | (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) | (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 | K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 | (H > M) | (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 | K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 | (H > M) | (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 | K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)).*dsi; else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return end function map = mapdissim(im,ws,hsz,zp) % Fast calculation of dissimilarity map % % (c) M.Ponomarenko, 2017 % % map = mapdissim(image,ws,hsz,zp); % % Inputs: % im - grayscale image % ws - patch size for dissimilarity calculation % hsz - half of size of search zone of similar patches % zp - size of area around of each patch which will be excluded from % searching to provide robustness to spatially correlated noise. % Set zp=0 if the noise is white or there is no noise on the image. % % Output: % map - values of dissimilarity for each possible position of patch [ws ws] pixels % % Examples: % map = mapdissim(im,9,6,0); % map = mapdissim(im); im = double(im); [loy,lox]=size(im); bige=1e30; if nargin < 4 zp=0; end if nargin < 3 hsz=11; end if nargin < 2 ws=9; end a=zeros(loy+hsz*2-1,lox+hsz*2-1); % zeropadding copy of im a(hsz+1:hsz+loy,hsz+1:hsz+lox)=im; map=zeros(loy,lox)+bige; % starting dissimilarity H = fspecial('average', ws); % patch size for i=1:hsz*2 for j=1:hsz*2 if abs(i-hsz-1)>zp || abs(j-hsz-1)>zp delt=(a(i:i+loy-1,j:j+lox-1)-im).^2; % pixel based MSE delt=imfilter(delt,H,'replicate'); % mean MSE in window [ws ws] map=min(map,delt); end end end end